FLOAT AND LEVER VALVES
Globe or Angle, Screwed or Flanged All Sizes
800-KECKLEY (800-532-5539)
847/674-8422
FAX: 847/674-2106
E-MAIL: SALES@KECKLEY.COM
WEB SITE: WWW.KECKLEY.COM

NO QUESTION. WE HAVE THE ANSWERS

FLOAT \& LEVER VALVES

Since 1914, Keckley engineering and manufacturing has been working for industry and commercial building installations worldwide. Keckley Float and Lever Valves excel in their construction and performance.

With the purchase of Klipfel Valves Inc. in 1962, there was a combining of engineering talents and features of both valve companies resulting today in this complete line. Float Valves are actuated Lever Valves designed to control the level
of liquids. Lever Valves are designed to control the flow of liquids, gases or steam. This can be done by manual operation, float boxes or mechanisms, electric motors or other actuators through linkage to the lever of the valve.

Typical Applications:
Open or closed Feed water storage tanks
Vats
Process tanks
Cooling towers
Basins
Standpipes
Receivers
All valves can be used on filling control (close on level rise) or drainage control (open on level rise) applications.

Options:

Floats - all materials, sizes and connections
Float Rods - brass, stainless steel or galvanized pipe
Swivel Adaptor - vertical operation of float rod; replaces rosette and joins the lever and float rod
Trim - main valve and seat can be brass or stainless steel
Discs and Cups - Teflon for temperatures exceeding $125^{\circ} \mathrm{F}$ to maximum of $350^{\circ} \mathrm{F}$.

When ordering, specify:

1) Valve size
2) Keckley type number
3) Connections (screwed or flanged)
4) Globe or angle pattern
5) Media
6) Maximum operating pressure
7) Discharge pressure of valve if other than atmosphere
8) Maximum temperature

Any additional information to help us insure a correct selection.

Typical Installations

Filling Control

Filling Control

Submerged Filling Control

Guided Filling Control

Drainage Control

Filling Control

CONDENSED DESCRIPTION OF FLOAT AND LEVER VALVES STANDARD CONSTRUCTION

FLOAT VALVE NO. 27 LEVER VALVE NO. 62

Balanced Double Seated (not tight closing) Globe or Angle
BRONZE - CAST IRON • STAINLESS STEEL BODY

NO. 62 GLOBE

Application/Service: The No. 27 double seated float valve is the type most widely used for the automatic control of the supply of liquids to an open tank where dead-end closing is not essential and valve inlet pressures are normal. Many thousands are in use on large and small water, oil and chemical storage tanks in all types of industries.

Where a drop-tight closing float valve, or a valve for higher than ordinary pressure is required, one of the single seated valves, described on the following pages, should be selected. The maximum inlet pressures for the sizes of the No. 27 valve are shown in the table on the opposite page.
The No. 62 lever valve is the same valve minus the float, float rod and rosette. It may be operated by a float inside a closed tank or float cage; by hand or electric solenoid as a quick opening valve; and wherever a double seated sliding stem valve is required.

Construction: These valves are all metal, simple in operation, sturdy in construction and of the best materials and workmanship. A double seated inner valve, as illustrated, is standard. Both angle and globe pattern bodies are available in all the sizes. The standard valve can be adapted to nearly any installation.

The swivel yoke, which supports the lever, can be turned and secured at any angle. The length and angle of the float rod can be adjusted at the rosette so that the valve can be easily adapted to various locations.

Materials: In sizes $11 / 2$ inch and smaller, the No. 27 and No. 62 valves have bronze bodies and trim with integral seats. In sizes 2 inches and larger, the standard bodies are cast iron with bronze trim and removable seats. Stainless steel trim can also be supplied. All iron, all bronze and all stainless steel valves can be supplied at extra cost in many sizes.
Operation: As ordinarily assembled and used as a filling controller, the inner valve in the No. 27 rises and opens as the float drops with the water level. With the lever reversed, the float and inner valve move in the same direction so that the valve will open on level rise and can be used as a drainage controller.
In the same manner, the No. 62 valve may be assembled for either direct or reverse movement.

FLOAT VALVE NO. 27

Balanced Double Seated (not tight closing) Globe or Angle
BRONZE - CAST IRON • STAINLESS STEEL BODY

NO. 27 GLOBE

Installation: A float valve when used on a water tank installation is best located near the surface of the water with the float where it will be least disturbed by waves. The discharge pipe extending below the surface helps to prevent waves. Where sanitary regulations forbid the use of such a discharge pipe because of the possibility of siphoning out of the tank, the discharge may flow into a funnel and perforated pipe. The angle pattern will avoid the need for an elbow

Note that the inlet of the No. 27 valve is at the side of the angle pattern body.

The valve stem should be vertical to avoid friction and wear on the inner valve sliding on its side. The valve will operate just as well if inverted, but the lever must be reversed. If space limitations require the valve to be installed with stem horizontal in a vertical pipe, a lever bent 90° can be supplied. The valve may be submerged, if desired.

NO. 27 ANGLE (SIDE INLET)
Float
Float Rod
Float Rod Bolt and Nut Rosette

NO. 27-DIMENSIONS—WEIGHTS (approximate)

Size	A-Inches Angle Pattern			B-Inches Angle Pattern			Face to Face-Inches Globe Pattern			Angle and Globe Inches					Float Diameter Inches	Shipping Weight-Lbs			Capacity Factor See Page 11	Max. Inlet Pressure
Inches	$\begin{aligned} & \text { Std } \\ & \text { Scr. } \end{aligned}$	$\begin{aligned} & \text { Std } \\ & \text { Flg. } \end{aligned}$	Ex. Hvy. Flg.	$\begin{aligned} & \text { Std. } \\ & \text { Scr. } \end{aligned}$	$\begin{aligned} & \text { Std } \\ & \text { Fig. } \end{aligned}$	Ex. Hvy. Flg.	Std. Scr	$\begin{aligned} & \text { Std. } \\ & \text { Flg. } \\ & \hline \end{aligned}$	Ex. Hvy. Flg.	C	D	E	F	G			Std. Flg.	Ex. Hvy. Flg.		
1/2	2	-	-	2	-	-	41/8	-	-	85\%	1516	$13^{11 / 16}$	16	5	7	10	-	-	. 04	150
$3 / 4$	2	-	-	2	-	-	41/8	-	-	85\%	115/16	$13^{11 / 16}$	16	5	7	10	-	-	. 15	150
1	21/8	-	-	21/8	-	-	43/8	-	-	$83 / 4$	115/6	$13^{11 / 16}$	16	53/16	7	13	-	-	. 24	150
$11 / 4$	$2^{1 / 4}$	-	-	$21 / 4$	-	-	$41 / 2$	-	-	$87 / 8$	115/6	$13^{11 / 16}$	16	$51 / 4$	7	14	-	-	. 40	120
$11 / 2$	$21 / 4$	-	-	$21 / 4$	-	-	41/2	-	-	87/8	115/6	$13^{11 / 16}$	16	$51 / 4$	7	14	-	-	. 57	100
2	41/4	41/4	41/2	$3{ }^{1 / 4}$	31/4	$31 / 2$	$61 / 2$	$61 / 2$	7	$12^{3 / 4}$	2	173/8	16	$81 / 2$	7	29	38	42	1.4	75
$21 / 2$	$51 / 4$	57/8	63/16	315/16	41/16	43/8	77/8	83/16	813/16	$133 / 4$	2	173/8	18	$91 / 4$	8	45	65	75	1.7	60
3	$53 / 4$	53/4	61/8	45\%	4\%	5	91/4	91/4	10	$14^{1 / 4}$	2	173/8	18	95\%	8	67	86	100	2.3	50
4	-	615/16	71/4	-	5\%/8	$5^{11 / 16}$	-	$103 / 4$	113/8	$141 / 2$	2	177/8	18	105/8	8	-	120	137	4.4	35
5	-	65/8	71/16	-	6\%	71/16	-	12	127/8	19	$2^{1 / 2}$	201/2	24	121/2	10	-	168	190	7.5	30
6	-	87/16	87\%	-	$61 / 2$	615/16	-	13	137\%	193/4	$21 / 2$	201/2	24	13	10	-	194	229	10.2	25
8	-	83/8	87/8	-	83/8	87/8	-	$16^{3 / 4}$	173/4	257/8	3	28	30	163/8	10	-	342	409	15.7	20
10	-	$101 / 4$	1015/6	-	101/4	1015/6	-	201/4	215/8	293/4	3	41	30	181/2	12	-	480	572	25.0	15
12	-	117/8	12\%	-	11\%\%	125\%	-	225/8	241/8	32	3	41	30	20	12	-	715	853	40.0	12

Certified Dimensional Sheets Available

【KECKLEY

LEVER VALVE NO. 62
 Balanced Double Seated (not tight closing) Globe or Angle
 BRONZE - CAST IRON • STAINLESS STEEL BODY

NO. 62 GLOBE

Application/Service: The No. 62 Lever Valve is adapted for manual control of steam, water and air lines wherever a quick acting double seated valve is required, but where perfectly tight closing is not essential.

It is widely used on feed water heaters and on open and closed tanks and operated by an internal float such as the No. 20, shown on page 10. It may also be operated by an electric solenoid, diaphragm motor, or hydraulic cylinder.

Construction: All sizes are fitted with swivel yokes, so that the lever can be turned to any desired direction. The lever can be reversed

LIST OF PARTS

Body Inner Valve Seat Bushings $\left\{\begin{array}{l}\text { upper }\end{array}\right.$ Valve Stem

Stem Clevis Packing Box Cover Swivel Guide Yoke

Guide Arm
 Lever Weight

NO. 62-DIMENSIONS—WEIGHTS (approximate)

Size Inches	A-Inches Angle Pattern			Face to Face-Inches Globe Pattern			B-Inches Angle Pattern			Globe and Angle-Inches Note page 5 letter code				Shipping Weight-Lbs.				Capacity Factor See Page 15	Max. Inlet Pressure
	Std Scr.	$\begin{aligned} & \text { Std } \\ & \text { Flg. } \end{aligned}$	Ex. Hvy. Flg.	Std. Scr.	$\begin{aligned} & \text { Std } \\ & \text { Flg. } \end{aligned}$	Ex. Hvy. Flg.	Std. Scr	Std. Flg.	Ex. Hvy. Flg.	C	D	E	F	G	Std. Scr.	Std. Flg.	Ex. Hvy. Flg.		
1/2	2	-	-	41/8	-	-	2	-	-	81/8	$1^{15 / 16}$	11/3/4	65/16	5	10	-	-	. 04	150
$3 / 4$	2	-	-	41/8	-	-	2	-	-	81/8	$1^{15 / 16}$	$113 / 4$	65/16	5	10	-	-	. 15	150
1	21/8	-	-	$43 / 8$	-	-	21/8	-	-	8\%/16	$1^{15 / 16}$	$113 / 4$	65/16	53/16	11	-	-	. 24	150
$11 / 4$	21/4	-	-	$41 / 2$	-	-	21/4	-	-	81/2	$1^{15} / 16$	113/4	65/16	$51 / 4$	11	-	-	. 40	120
$1^{1 / 2}$	21/4	-	-	$41 / 2$	-	-	$21 / 4$	-	-	81/2	$1^{15 / 16}$	113/4	65/16	$51 / 4$	12	-	-	. 57	100
2	$41 / 4$	41/4	$41 / 2$	$61 / 2$	61/2	7	$31 / 4$	$31 / 4$	$31 / 2$	$13^{1 / 4}$	2	153/8	65/8	$81 / 2$	26	36	40	1.40	75
$2^{1 / 2}$	$51 / 4$	57\%	63/16	$7{ }^{7} / 8$	83/16	$8^{13 / 16}$	$3^{15 / 16}$	41/8	43/8	$13^{1 / 2}$	2	153/8	65\%	91/4	53	64	70	1.70	60
3	$53 / 4$	$53 / 4$	61/8	91/4	91/4	10	4/8	4/8	5	14	2	153/8	65\%	95/8	73	83	97	2.30	50
4	-	$6{ }^{15} / 16$	$71 / 4$	-	$10^{3 / 4}$	113/8	-	53/8	$5^{11 / 16}$	141/8	2	153/8	65\%	105/8	-	117	134	4.40	35
5	-	6\%	71116	-	12	127/8	-	6\%	71/16	191⁄2	21/2	163/4	9	121⁄2	-	163	185	7.50	30
6	-	87/16	87/8	-	13	$13^{7 / 8}$	-	61/2	$6^{15} / 16$	201/4	$2^{1 / 2}$	$163 / 4$	9	13	-	188	223	10.20	25
8	-	83/8	87/8	-	163/4	$173 / 4$	-	83/8	87/8	227/8	3	19	13	163/8	-	335	402	15.70	20
10	-	$101 / 4$	$10^{15} / 16$	-	201/4	215/8	-	$101 / 4$	$10^{15 / 16}$	243/4	3	19	13	181/2	-	472	564	25.00	15
12	-	11/8	125/8	-	225/8	241/8	-	117/8	125/8	265/8	3	19	13	20	-	708	846	40.00	12

[^0]
FLOAT VALVE NO. 7 FLOAT VALVE NO. 77

Single Seated, Dead End Service (tight closing) Globe or Angle
BRONZE • CAST IRON • STAINLESS STEEL BODY

Application/Service: The No. 7 and 77 pilot controlled float valves are recommended when tight closing is essential. They are commonly used to maintain a water level in an open tank. They are best suited for clean liquids not injurious to neoprene, leather or brass parts. Standard design temperature is $125^{\circ} \mathrm{F}$. For higher temperatures up to $350^{\circ} \mathrm{F}$, the neoprene disc in the No. 7 or neoprene disc and leather cup in the No. 77 are replaced by teflon parts.
Construction: Referring to the sectional views on page 8 , the inner valve consists of a hollow bronze piston, somewhat larger in diameter than the seat bore, and carrying the disc holder. The composition disc may be replaced when worn. The soft disc will accommodate itself to grit and wear and still close tight where a metal to metal construction would leak.
The piston slides in a stationary bronze cylinder attached to the cover or body. The pilot port is opened and closed by the end of the stem which is moved by the lever. A pin through the stem at its lower end permits the inner valve to be lifted by the stem.

The guide yoke, with the lever and float, can be turned and secured at any angle. The angle and length of float rod can be adjusted at the rosette.
Operation: In the No. 7 valve, made in sizes 2 inches and smaller, water from the inlet enters the space above the piston through a small hole in the piston head. While the pilot port is open, this water escapes freely through the hollow valve post to the outlet. The excess pressure under the piston, in relation to the pressure above it, and the weight of the float hold the valve open.
On closing the pilot port, the water pressure above the piston quickly rises to equal and balance the inlet pressure under the piston. Thereupon the inlet pressure above the disc holder closes the valve. No leather cup is required.
The disc closes in the direction of the flow through the No. 7 valve. In the larger valves and for the higher pressures, the "pull" of the water in passing through the valve seat may cause the valve to close suddenly from a nearly closed position. For
this reason, this valve is not made in sizes above 2 inches.

In the No. 77 valve, made in sizes 2 inches and larger, the inlet pressure is under the disc. Water enters the chamber above the piston through the strainer and the central and diagonal passages. If the pilot port is open, this water escapes freely to the valve outlet, so that the inlet pressure under the disc opens the valve. When the pilot port is closed, the water pressure above the piston quickly rises to equal the inlet pressure under the disc and, due to the larger piston area, the inner valve is moved toward the seat.

The disc closes against the inlet pressure and sudden closing cannot occur in the No. 77. However, this valve requires the piston to be fitted with a leather cup, the friction of which may cause sluggishness on low inlet pressures.
Maximum inlet pressures for both the No. 7 and No. 77 are shown in the table on the next page.

FLOAT VALVE NO. 7
 FLOAT VALVE NO. 77

Internal Pilot Control, Single Seated, Dead End Service, Globe or Angle
BRONZE - CAST IRON - STAINLESS STEEL BODY

NO. 7 ANGLE
(SIDE INLET)

LIST OF PARTS 1 - Body
2 - Cover*
3 - Inner Valve
4 - Cylinder*
5 - Seat Bushing*
6 - Composition Valve Disc
7 - Port Stud*
8 - Packing Box
9 - Valve Stem
10 - Stem Clevis
11 - Swivel Guide Yoke
*Parts used only in sizes 2" and larger. + Used in No. 77 only.
12 - Guide Arm
13 - Lever
14 - Float Rod
15 - Rosette
16 - Float Rod Bolt
17 - Float
18 - Disc Plate
19 - Disc Plate Screw*
+20 - Strainer*
+21 - Leather Cup*
+22 Lock Nut *

Materials: No. 7 valves in sizes $1 \frac{1}{2}$ inch and smaller have bronze bodies and integral seats, screwed ends only. The 2 inch No. 7 and all sizes of the No. 77 have cast iron bodies, with renewable seats, screwed or flanged ends in sizes 2 inch to 3 inch inclusive, flanged ends only above 3 inch. All sizes of both valves have bronze trim and renewable composition discs.

NO. 77 ANGLE (BOTTOM INLET)

NOS. 7 and 77—DIMENSIONS—WEIGHTS (approximate)

Size Inches	A or B-Inches Angle Pattern			Face to Face-Inches Globe Pattern			Angle PatternInches						Float Diameter Inches	Shipping Weight-Lbs. Globe Pattern			Capacity Factor Page 11	$\begin{aligned} & \text { Max.** } \\ & \text { Inlet } \\ & \text { Pressure } \end{aligned}$
	Std Scr.	$\begin{aligned} & \text { Std } \\ & \text { Flg. } \end{aligned}$	$\begin{aligned} & \text { Ex. Hvy. } \\ & \text { Flg. } \end{aligned}$	$\begin{aligned} & \text { Std. } \\ & \text { Scr. } \end{aligned}$	$\begin{aligned} & \text { Std } \\ & \text { Flg. } \end{aligned}$	Ex. Hvy. Flg.	C	D	E	F	G	H		Std. Scr.	Std. Flg.	Ex. Hvy. Flg.		
1/2 \& 3/4	2	-	-	41/4	-	-	87/16	15/16	$13^{11 / 16}$	16	53/16	65/16	7	11	-	-	. 17	130
1	21/16	-	-	5	-	-	$83 / 4$	15/16	$13^{11 / 16}$	16	51/2	65\%	7	13	-	-	. 35	100
$11 / 4$	21/8	-	-	51/8	-	-	$83 / 4$	15/16	$13^{11 / 16}$	16	$51 / 2$	6\%	7	14	-	-	. 50	80
$11 / 2$	21/2	-	-	51/4	-	-	9	15/16	$13^{11 / 16}$	16	53/4	67/8	7	14	-	-	. 80	65
2	37/16	41/8	43/8	7\%16	$81 / 4$	83/4	123/8	15/16	173/8	16	8	101/8	7	35	45	60	1.6	50
2	$3^{7 / 16}$	41/8	43/8	7\%16	$81 / 4$	$83 / 4$	123/8	15/16	173/8	16	8	101/8	7	35	45	60	1.6	250
21/2	315/16	43/4	51/16	$83 / 4$	$91 / 2$	101/8	$12^{3 / 4}$	$15 / 16$	173/8	18	$81 / 2$	105/8	8	55	68	72	2.5	250
3	$41 / 2$	$51 / 4$	5\%\%	$9^{3 / 4}$	101/2	11/1/4	131/8	15/16	173/8	18	91/8	111/4	8	71	80	115	3.5	250
4	-	61/8	67/16	-	121/4	127/8	135/8	15/16	173/8	18	93/8	111/2	8	-	140	145	6.5	250
5	-	$71 / 4$	$711 / 16$	-	141/2	153/8	181/2	21/2	201/2	24	11/4/4	141/4	10	-	235	195	10.0	250
6	-	81/8	8\%16	-	$161 / 4$	171/8	193/4	$21 / 2$	201/2	24	121/2	15\%	10	-	235	240	14.0	250
8	-	91/8	95\%	-	191/8	201/8	25	3	28	30	$161 / 4$	21	10	-	395	445	26.0	250
10 g	globe patt	ern only	-	-	201/8	211/2	36	5	41	30	29	35	12	-	650	700	41.0	250

**The absolute minimum operating pressure for the \#77 Float Valve is 5 psi for sizes $2^{\prime \prime}$ through 6 " and 10 psi for sizes $8^{\prime \prime}$ and 10".
The neck of the globe body is slightly longer than the neck of the angle body. Therefore dimensions G, H, and C are slightly greater than those shown above. Certified Dimensional Sheets Available.

KKECKLEY

LEVER VALVE NO. 73 LEVER VALVE NO. 773

Internal Pilot Control, Single Seated, Dead End Service, Globe or Angle BRONZE • CAST IRON • STAINLESS STEEL BODY

Application/Service: These single seated, internal pilot type lever valves are adapted for operation by an enclosed float (page 10) or by hand, solenoid, diaphragm motor, or other means, wherever a tight-closing, quick-acting, easily operated valve is required.

Operation: The lever valves on this page have the same internal construction and operate in the same manner as the float valves described on pages 7 and 8 . They are also adapted to the same pressure and temperature conditions as the corresponding float valves.

Materials: No. 73 valve in sizes $1 / 1 / 2$ inch and smaller have bronze bodies and integral seats, screwed ends only. The 2 inch No. 73 and all sizes of the No. 773 have cast iron bodies, with renewable seats, screwed or flanged ends in sizes 2 inch to 3 inch inclusive, flanged ends only above 3 inch. All sizes of both valves have bronze trim and renewable composition discs.

They are suitable for water and other ordinary liquids. The operating rod may be attached to either end of the lever with the counterweight located as required.

The No. 73 Single Seated Lever Valve is the same as No. 7, shown and described on pages 7 and 8 , minus float, float rod and rosette, and plus a counterweight.

The No. 773 Single Seated Lever Valve is the same as No. 77, shown and described on pages 7 and 8, minus float, float rod and rosette, and plus a counterweight.

NOS. 73 and 773-DIMENSIONS—WEIGHTS (approximate)

Size Inches	A or B-Inches Angle Pattern			Face to Face-Inches Globe Pattern			Angle PatternInches						Shipping Weight-Lbs. Globe Pattern			Capacity Factor Page 11	Max.** Inlet Pressure
	Std Scr.	$\begin{aligned} & \hline \text { Std } \\ & \text { Flg. } \end{aligned}$	Ex. Hvy. Flg.	Std. Scr.	Std Flg.	Ex. Hvy. Flg.	C	D	E	F	G	H	Std. Scr.	Std. Flg.	Ex. Hvy. Flg.		
$1 / 2$ \& $3 / 4$	2	-	-	41/4	-	-	$7{ }^{15} / 16$	$1^{15 / 16}$	$11^{3 / 4}$	65/16	53/16	65/16	10	-	-	. 17	130
๓ 1	21166	-	-	5	-	-	81/4	15/16	$11^{3} / 4$	65/16	$51 / 2$	6\%	12	-	-	. 35	100
ค $111 / 4$	21/8	-	-	51/8	-	-	81/4	$1^{15} / 16$	$113 / 4$	65/16	$51 / 2$	65\%	13	-	-	. 50	80
< 11120	21/2	-	-	51/4	-	-	81/2	$1^{15} / 16$	$11^{3} / 4$	65/16	$53 / 4$	67/8	14	-	-	. 80	65
2	37/16	41/8	43/8	7\%16	81/4	83/4	12	$1^{15} / 16$	153/8	65/8	8	101/8	30	48	56	1.6	50
2	37/16	41/8	$43 / 8$	7\%16	81/4	$83 / 4$	12	$15 / 16$	153/8	65/8	8	101/8	34	48	56	1.6	250
$2^{1 / 2}$	$3^{15} / 16$	$43 / 4$	51/16	$83 / 4$	$91 / 2$	101/8	123/8	$1^{15} / 16$	153/8	65/8	$81 / 2$	105/8	53	65	72	2.5	250
๓ 3	$41 / 2$	$51 / 4$	5\%	93/4	$10^{1 / 2}$	111/4	$12^{3 / 4}$	$1^{15 / 16}$	153/8	65/8	91/8	111/4	73	105	110	3.5	250
^ 4	$43 / 4$	61/8	67/16	-	$12^{1 / 4}$	$12^{7} / 8$	$13^{1} / 4$	$1^{15} / 16$	153/8	65/8	93/8	111/2	-	135	140	6.5	250
\bigcirc	-	71/4	$711 / 16$	-	$141 / 2$	153/8	183/4	$21 / 2$	163/4	81/4	111/4	141/4	-	170	195	10.0	250
乙 6	-	81/8	89/16	-	$161 / 4$	171/8	203/4	$2^{1 / 2}$	$163 / 4$	81/4	121/2	15\%/8	-	230	240	14.0	250
8	-	91/8	95\%	-	191/8	201/8	23	3	19	13	$161 / 4$	21	-	395	445	26.0	250
10	globe pat	rn only	-	-	201/8	211⁄2	40	5	41	$13^{1 / 2}$	29	35	-	650	700	41.0	250

[^1]
FLOAT BOX NO. 20

6" or 8" Floats
 Cast Iron Body With Ball Bearing Stuffing Box

No. 20 Float Box

Application/Service: Float Boxes are used in connection with closed tanks where fluctuation of the liquid level in the tank is the governing factor in the control of the lever valve, signal switch, motor or other equipment. The entire unit is mounted outside the tank where it can be easily installed, adjusted, inspected and serviced.

By placing the Box in the same horizontal plane as the tank liquid level with equalizing connections above and below the level and the valve suitably linked to the Box, the tank level may be automatically maintained whether the flow is into or out of the tank.

Typical applications are with a No. 62, 73 or 773 lever valve used as a level controller for hot or cold water.

Construction: The packing box has outboard ball bearing with bolted gland reducing friction and wear to a minimum, the rotary stem is stainless steel. The float rod is brass when used with a 6 inch float and galvanized pipe when used with an 8 inch float. A gauge glass and bracketed lever and counterweight completes the Unit.

Equalizing pipe connections are 1" screwed on the Box with the $6^{\prime \prime}$ float, $1 \frac{1}{2 \prime \prime}$ standard flanged or screwed connections on the 8" Box. Cast iron Float Boxes are suitable for pressures up to 250 psi and maximum temperatures of $406^{\circ} \mathrm{F}$.

NO. 20 FLOAT BOX

Size of Lever Valve	$1 / 2$	$3 / 4$	1	$11 / 4$	$11 / 2$	2	$21 / 2$	3	4	5	6
Size of Float	6	6	6	6	8	8	8	8	8	8	8
Approximate Shipping Weight	100	100	100	100	190	190	190	190	190	190	190

【KECKLEY

SELECTING SIZE OF FLOAT AND LEVER VALVE

The maximum capacity of a float or lever valve depends on its size and on the pressure difference - or drop - between the inlet and outlet when the valve is wide open. It is recommended that a valve be selected having 50% to 100% more
capacity than the normal demand. For example, if the normal requirement is 100 gallons per minute, a valve having 150 to 200 G.P.M. capacity should be selected. This will result in less variation in water level, and provide reserve capacity
in case of low water pressure or unusual demand. The maximum capacity is the product of the flow per square inch of port area (Orifice Capacity) multiplied by the equivalent port area of the valve (Capacity Factor).

MAXIMUM CAPACITIES OF NOS. 27 FLOAT AND 62 LEVER VALVES U.S. GALLONS PER MINUTE OF WATER

Size																		apacity
Inches	1	3	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	Factor
1/2"	1.5	2.6	3	5	6	7	7	8	9	10	10	11	12	13	14	14	15	. 04
$3 / 4$	5.7	10	13	18	22	25	28	31	34	36	38	40	44	48	51	54	57	. 15
1"	9.1	16	20	29	35	40	46	50	54	58	61	64	70	76	81	86	91	. 24
11/4"	15	26	34	48	58	68	76	83	90	97	102	108	118	127	136	144	152	. 40
$11 / 2$ "	22	38	48	68	83	97	108	118	128	138	145	154	168	181	194	205	216	. 57
2 "	53	92	119	168	204	236	266	290	314	339	357	377	412	446	447	-	-	1.4
$21 / 21$	64	111	144	204	248	287	323	352	382	410	433	458	500	-	-	-	-	1.7
$3{ }^{\prime \prime}$	87	150	196	276	335	389	437	476	518	556	586	620	-	-	-	-	-	2.3
$4{ }^{\prime \prime}$	167	290	374	528	642	743	846	910	990	-	-	-	-	-	-	-	-	4.4
5"	285	493	637	900	1095	1270	1425	1550	-	-	-	-	-	-	-	-	-	7.5
$6{ }^{\prime \prime}$	388	672	867	1225	1490	1725	1940	-	-	-	-	-	-	-	-	-	-	10.2
8"	596	1030	1335	1885	2290	2655	-	-	-	-	-	-	-	-	-	-	-	15.7
10"	950	1645	2125	3000	3650	-	-	-	-	-	-	-						25
12"	1520	2630	3400	4800	5830	-	-	-	-	-	-	-	Capacities are in U.S. Gallons. The Imperial Gallon =1.2 U.S. Gallons.					40
1 sq . in. Orifice Capac	38	66	85	120	147	170	190	208	225	240	255	269	294	318	340	360	380	1

For other liquids divide above G.P.M. by $\sqrt{\text { specific }}$ gravity of the liquid.

MAXIMUM CAPACITIES OF NOS. 7, 77 FLOAT AND 73, 773 LEVER VALVES U.S. GALLONS PER MINUTE OF WATER

Size	Pressure Drop between Inlet and Outet in Pounds per Square Inch																	Capacity Factor
Inches	1	3	5	10	15	20	25	30	35	40	45	50	60	70	80	90	100	
$3 / 4$	6.5	11	14	20	25	29	32	35	38	41	43	46	50	54	58	61	65	. 17
$1{ }^{\prime \prime}$	13	23	30	42	52	50	66	73	79	84	89	94	103	111	119	126	133	. 35
$11 / 4 "$	19	33	42	60	73	85	95	104	112	120	127	134	147	159	170	180	190	. 50
$11 / 2$ "	30	53	68	96	118	136	152	166	180	192	204	215	235	254	272	288	304	. 80
2 "	61	106	136	192	235	272	304	333	360	384	408	430	470	508	544	576	608	1.6
21/2"	95	165	212	300	368	425	475	520	562	600	638	672	735	795	850	900	950	2.5
$3{ }^{\prime \prime}$	133	231	297	420	514	595	665	728	786	840	892	940	1030	1110	1190	1260	1330	3.5
$4{ }^{\prime \prime}$	247	429	552	780	955	1105	1235	1353	1460	1560	1660	1750	1910	2070	2210	2340	2470	6.5
$5{ }^{\prime \prime}$	380	660	850	1200	1470	1700	1900	2080	2250	2400	2550	2680	2940	3180	3400	3600	3800	10.0
$6{ }^{\prime \prime}$	532	923	1192	1680	2060	2380	2660	2910	3150	3360	3570	3760	4110	4450	4760	5030	5320	14.0
8"	987	1720	2215	3120	3820	4420	4930	5400	5850	6230	6530	6980	7630	8260	8830	9350	9870	26.0
1 sq. in. Orifice Capac.	38	66	85	120	147	170	190	208	225	240	255	269	294	318	340	360	380	

For other liquids divide above G.P.M. by $\sqrt{\text { specific gravity of the liquid. }}$
Capacities are in U.S. Gallons. The Imperial Gallon $=1.2$ U.S. Gallons.

Orifice Capacity: Bottom line of tables shows the G.P.M of water which will flow through a standard orifice of 1 sq . in. area at the given pressure drop. These quantities are calculated by the formula:
G.P.M. per Sq. In. $=38 \sqrt{ }$ Pressure Drop in p.s.i.

$$
=25 \sqrt{\text { Pressure Drop in feet }}
$$

For other liquids, divide the above G.P.M. by
$\sqrt{\text { specific gravity of liquid. }}$
Capacity Factor: The last column at the right in the tables shows the equivalent square inches of port area of each size of Nos. 27, 62, 7,

77, 73 and 773 valves. These capacity factors are obtained by test, not by measurement of the ports.

Capacity Factors for other types of valves are listed in the last column of each table on the following pages.

[^0]: Certified Dimensional Sheets Available

[^1]: **The absolute minimum operating pressure for the \#77 Float Valve is 5 psi for sizes $\mathbf{2 " ~}^{\prime \prime}$ through 6" and 10 psi for sizes $8^{\prime \prime}$ and $10 "$.
 The neck of the globe body is slightly longer than the neck of the angle body. Therefore dimensions G, H, and C are slightly greater than those shown above.
 Certified Dimensional Sheets Available.

